Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 214(Pt A): 176-192, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37429410

ABSTRACT

Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.


Subject(s)
DNA Damage , DNA , Humans , DNA/genetics , DNA/chemistry , Nucleic Acid Conformation , DNA Repair , DNA Replication , Genomic Instability
2.
Nucleic Acids Res ; 49(12): 6673-6686, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34139015

ABSTRACT

G-quadruplexes (G4s) are non-canonical nucleic acid structures involved in fundamental biological processes. As G4s are promising anticancer targets, in past decades the search for effective anticancer G4 binders aimed at the discovery of more cytotoxic ligands interfering with specific G4 structures at oncogenes or telomeres. Here, we have instead observed a significant activation of innate immune genes by two unrelated ligands at non-cytotoxic concentrations. The studied G4 binders (pyridostatin and PhenDC3) can induce an increase of micronuclei triggering the activation of the cytoplasmic STING (stimulator of interferon response cGAMP interactor 1) signaling pathway in human and murine cancer cells. Ligand activity can then lead to type I interferon production and innate immune gene activation. Moreover, specific gene expression patterns mediated by a G4 binder in cancer cells correlate with immunological hot features and better survival in human TCGA (The Cancer Genome Atlas) breast tumors. The findings open to the development of cytostatic G4 binders as effective immunomodulators for combination immunotherapies in unresponsive tumors.


Subject(s)
Aminoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cytostatic Agents/pharmacology , G-Quadruplexes/drug effects , Immunity, Innate/drug effects , Picolinic Acids/pharmacology , Animals , Breast Neoplasms/metabolism , Cell Line , Female , Fused-Ring Compounds/pharmacology , Humans , Immunity, Innate/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-beta/metabolism , MCF-7 Cells , Melanoma, Experimental/metabolism , Membrane Proteins/metabolism , Mice , Micronuclei, Chromosome-Defective , Nucleotidyltransferases/metabolism , Transcriptional Activation
3.
J Cell Mol Med ; 25(5): 2459-2470, 2021 03.
Article in English | MEDLINE | ID: mdl-33476483

ABSTRACT

Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%-30%) presenting a rare large-effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD-associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole-exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion-transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10-5 ). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low-level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large-effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder/etiology , Calcium-Binding Proteins/genetics , Genetic Predisposition to Disease , Heterozygote , Neural Cell Adhesion Molecules/genetics , Penetrance , Sequence Deletion , Adult , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/psychology , Comparative Genomic Hybridization , Computational Biology/methods , DNA Copy Number Variations , Exons , Female , Gene Expression Profiling , Gene Regulatory Networks , Genetic Association Studies , Genetic Variation , Genome, Mitochondrial , Genomics/methods , Humans , Infant , Male , Phenotype , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...